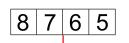


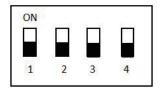
MANUAL

MODIFY TEMPERATURE RANGE


Remove the four screws on the air duct shell to see the dial switch. The temperature range of the transmitter can be set through the dial switch as below:

A: Measurement range of the dial switch is -40~80°C B: Measurement range of the dial switch is -20~80°C C: Measurement range of the dial switch is -40~60°C D: Measurement range of the dial switch is 0~50°C If the temperature range is not within the above range, can contact us for customization.

WIRING CONNECTION


• 4-20mA

No.	Symbol	Description	Remark
8	Т	Temperature analog signal positive	
7	V+	Power input positive 24Vdc	10~30V DC
6	V-	Power ground Temperature analog signal negative Humidity analog signal negative	
5	RH	Humidity analog signal positive	

• RS-485

No.	Symbol	Description	Remark	
8	Тх	485-A		
7	V+	Power input positive 24Vdc	- 10~30V DC	
6	V-	Power ground		
5	Rx	485-B		

DIP SWITCH DESCRIPTION

Built in dial switch, when the device uses dial to set an address, the configuration software will not be able to modify the address. It can only be used normally when all dial codes are 0. The dial code is shown in the figure: 1 = ON, 0 = OFF. The built-in dial

switch is used. When the device uses dial code to set the address, the configuration software cannot modify the address. Only when all dial codes are 0 can it be used normally. The dialing code is shown in the figure: 1 = ON, 0 = OFF

Modbus Add.	1	2	3	4
Use Configuration Address	0	0	0	0
Address 1	0	0	0	1
Address 2	0	0	1	0
Address 15	1	1	1	1

The default baud rate is 4800bit/s. If you need other baud rate, please inform us when ordering. The default address is 0x01. If you need to modify the address, please inform us when ordering

LETTER of AGREEMENT

Basic communication parameters

Code	8-bit binary
Data bit	8-bit
Parity bit	no
Stop bit	1 person
Error checking	CRC (Redundant Cyclic Code)
Baud rate	400bit/s \ 4800bit/s \ 9600 bit/s \ Default: 4800bit/s

Data frame format definition

Modbus-RTU communication protocol is adopted, the format is as follows:

Initial structure \geq 4 bytes of time

Address code = 1 byte

Function code = 1 byte

Data area = N bytes

Error check = 16-bit CRC

Ending structure \geq 4 bytes of time

Address code: It is the address of the transmitter, which is unique in the communication network (factory default 0x01).

Function code: The function instruction of the command issued by the host, this transmitter only uses the function code 0x03 (reading register data).

Data area: The data area is the specific communication data. Note that the high byte of the 16bits data comes first!

CRC code: two-byte check code.

Host inquiry frame structure:

Address code	Function code	Register start address	Register length	Low check bit	Check code high
1byte	1 byte	2byte	2byte	lbyte	1 byte

Slave response frame structure:

Address code	Function code	Number of valid bytes	Data area	Second data area	Nth data area	Check code
1byte	1byte	1byte	2byte	2byte	2byte	2byte

Register Address

Register address	PLC or configuration address	Content	Operating
0000 H	40001	Humidity	Read-only
0001 H	40002	Temperature	Read-only